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1. Introduction

In algebraic geometry one is interested in studying the zero sets of polynomial equations. In

number theory one is typically concerned with answering questions over arithmetically interesting

fields. As a pair these two subjects form the intersection, arithmetic geometry. Here one studies the

zero sets of polynomials over different rings and fields, such as the integers, the rational numbers or

finite fields. The problems studied in arithmetic geometry usually have relatively simple statements.

My research focuses on counting abelian surfaces that have real multiplication by a particular real

quadratic field.

2. Undergraduate Research

As a researcher it is always a pleasure to collaborate with others, and in particular I am looking

forward to working with undergraduates on research projects. In number theory many interesting

questions can be presented at a very basic level, and can be worked on and explored with only a

basic understanding of number theory. Such problems lend themselves well to undergraduates early

in their mathematical careers. One class of problems in particular that undergraduates can explore

comes from the study of elliptic curves. An elliptic curve can be described by the affine equation

y2 = p(x) where p(x) is a cubic polynomial, and a designated point at infinity. The points (x, y)

that satisfy the defining equation of an elliptic curve form a group under a special addition law.

Thus, problems about elliptic curves can have ties to group theory, finite fields or number fields, and

number theory. Many questions regarding elliptic curves can also be explored computationally since

the defining equations can be given explicitly and other properties, such as the addition law, can be

explicitly described as well. There are a handful of computer programs, such as Sage and GAP, that

allow for such computations to be done in bulk and with ease. The use of such computer systems

would also allow for learning and practice of some basic programming skills. One nice application

of elliptic curves is to cryptography. Possible research projects here could involve creating new

schemes for encoding and sending messages using elliptic curves. Some of the most common elliptic

curve cryptosystems in use now are analogues of preexisting cryptosystems.
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3. Research Synopsis

My research focuses on two-dimensional abelian varieties, abelian surfaces. These are the higher

dimensional analogues of elliptic curves. I take the Lang-Trotter Conjecture, initially a conjecture

about elliptic curves, and attempt to formulate a similar conjecture for abelian surfaces. Even if a

proof of the conjecture is out of reach, I can adduce evidence in support of it.

3.1. Motivation: The Elliptic Curve Case. Given an elliptic curve E one can define a map from

E to itself. Such a map is called an endomorphism. Most of the time the ring of endomorphisms

of E, denoted End(E), is the integers. Here each element [m] represents the multiplication by m

map, which takes a point P on E to mP = P +P + ...+P . However, there are instances where the

endomorphism ring is bigger; when this happens E is said to have complex multiplication. As an

example, the elliptic curve E : y2 = x3−x has an extra endomorphism that takes (x, y) 7→ (−x, iy),

so End(E) ∼= Z[i], and E is said to have complex multiplication by Z[i]. In general, let End(E)0 =

End(E)⊗Q.

Over a finite field Fq, every elliptic curve E, admits an extra endomorphism, namely the Frobe-

nius endomorphism Frobq : (x, y) 7→ (xq, yq). The action of Frobq can be represented as a matrix

in GL(2,Q), by looking the action of Frobq on the torsion points of E. Thus associated to this

endomorphism is a characteristic polynomial, specifically the characteristic polynomial of the ma-

trix. This polynomial has the form fE(T ) = T 2 − aqT + q, where aq = q + 1 − Nq, and Nq is

the number of points of E defined over Fq. Let πq be a root of fE(T ). Then Z[πq] ⊂ End(E),

and Q(πq) ⊂ End(E)0, and End(E)0 is either the quadratic imaginary field Q(πq) or a quaternion

algebra.

Now for E defined over Q, consider the reduction Ep = E mod p defined over Fp. Then Ep admits

a Frobenius endomorphism, Frobp, with πp as a root of the corresponding characteristic polynomial

fEp(T ). A question one might ask is, for a fixed quadratic imaginary field K, when does Q(πp) = K?

In 1976 Serge Lang and Hale Trotter made the following conjecture [2]

Conjecture 1. Let E be an elliptic curve defined over Q without complex multiplication and let K

be a given quadratic imaginary field. Define NK,E(x) to be the number of primes p ≤ x such that

Q(πp) = K. Then there is a constant C(K,E) > 0 such that

NK,E(x) ≈ C(K,E)

√
x

log x
.
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The plausibility of the Lang-Trotter conjecture hinges on the following ideas. First, one can

approximate the number of elliptic curves E defined over Fp with Q(πp) = K to be on the order of
√
p. Then one might guess that NK,E(x) could be approximated by the sum:∑

p≤x
Prob(random E/Fp has Q(πp) = K).

From the approximation above Prob(random E/Fp has Q(πp) = K) ≈
c
√
p

p
=

c
√
p

, since there are

approximately p elliptic curves defined over Fp. Thus the sum can be rewritten as∑
p≤x

c
√
p
.

Now rather than sum over only the primes, sum over all integers. In order to do this, use the prime

number theorem which informally states, that if a random integer is selected in the range of zero

to some large integer x, the probability that the selected integer is prime is about
1

ln(x)
. Thus,

NK.E(x) can be approximated as follows:∑
n≤x

c′√
n ln(n)

≈
∫ x

2

c′√
z ln(z)

≈ C
√
x

ln(x)
.

While a proof of the Lang-Trotter Conjecture may be inaccessible, it is interesting work to get

upper bounds on NK,E(x). Some of the better results have been obtained through the use of various

sieve techniques. One such upper bound is given by Cojocaru, Fouvry, and Murty, using a square

sieve [1]:

NK,E(x) ≤ x(log(log(x)))13/12

(log(x))25/24
(1 + #{p : p ramifies in K}).

Which can be improved to

NK,E(x) ≤ x17/18 log(x)

under a Generalized Riemann Hypothesis.

3.2. A Generalization to Abelian Surfaces. Since abelian surfaces are just the higher dimen-

sional analogue of elliptic curves a natural progression would be to pose a similar question regarding

the number of abelian surfaces with specified endomorphism ring structure.

The endomorphisms of an abelian surface also form a ring End(A), and as before define End(A)0 =

End(A) ⊗ Q. Then if A is simple, End(A)0 contains a unique, totally real quadratic subfield K,

and in this instance we say A has real multiplication by K.
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In a manner similar to that of Lang and Trotter we conjecture there is some sort of asymptotic

behavior for the number of primes for which an abelian surface A when reduced mod p will have

real multiplication by a specified field K.

Conjecture 2. Let A be an abelian surface defined over Q, with EndQ(A) ∼= Z. Consider the

reduction Ap = A mod p. Let K be a given real quadratic field, and define NK,A(x) to be the

number of primes p ≤ x such that Ap has real multiplication by K. Then there is a constant

C(K,A) > 0 such that

NK,A(x) ≈ C(K,A)

√
x

log x
.

My research aims to give heuristics to justify the claim made in this conjecture and to give

an upper bound for NK,A(x). The first part of my research looks at the question regarding the

number of principally polarized abelian surfaces defined over Fq that have real multiplication by

a specific real quadratic field K. This allows for a heuristic derivation, as with the Lang-Trotter

conjecture, of the probability that a random principally polarized abelian surface defined over Fq

has real multiplication by K. The second part of my research looks at obtaining an upper bound

on NK,A(x) and involves the use of a large sieve to do so.

The following theorem summarizes the results of the first part of my research.

Theorem 1. (H. Smallwood) Suppose that assumption (?) holds. Fix d ∈ Z>0, and let Xq be the

set of principally polarized abelian surfaces A defined over Fq such that K ⊂ End(A)0 for some fixed

totally real quadratic field K. Then there exist constants C1 and C2 such that

C1q
5/2 ≤ #Xq ≤ C2q

5/2.

(?) The size of an isogeny class can be approximated by the Sato-Tate measure.

The proof of this theorem relies on the following facts about abelian surfaces:

(i) A/Fq admits a Frobenius endomorphism which can be represented as a matrix in GSp4(Z`) =

{γ ∈ GL4(Z`) : γTJγ = mJ, m ∈ (Z`)
×}, where J is some skew-symmetric bilinear form.

(ii) The Frobenius matrix has a characteristic polynomial of the form fA(T ) = T 4 − aT 3 + bT 2 −

aqT + q2, with a, b ∈ Z.
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(iii) Two abelian surfaces A and B have the same characteristic polynomial of Frobenius if and

only if A and B are isogenous (i.e. there exists a map between A and B which is surjective

and has finite kernel) [3].

(iv) The coefficients of fA(T ) determine the real quadratic subfield inside End(A)0, in the sense

that a2 − 4b+ 8q = ∆L where ∆L is the discriminant of the totally real field L ⊂ End(A)0.

Armed with these facts, in order to get an approximation for #Xq, one must determine which pairs

of coefficients (a, b) permit real multiplication by this particular field K (i.e. which pairs (a, b) are

such that a2−4b+8q = ∆K). Second, it must be determined how many abelian surfaces correspond

to each characteristic polynomial with appropriate coefficients (i.e. what is the size of the isogeny

class of principally polarized abelian surfaces corresponding to the characteristic polynomial with

coefficients (a, b) that satisfy a2 − 4b+ 8q = ∆K). These two steps have been done, and the result

is Theorem 1. This approximation is then used to say that the probability that a random A/Fq

has real multiplication by K is ≈ Cq5/2

q3
=

C
√
q

, since there are approximately q3 abelian surfaces

defined over Fq. From here the arguments follow as with the Lang-Trotter conjecture described

above, and thus support the reasonableness of Conjecture 2. Further work to be done here includes

computations to explicitly determine the sizes of isogeny classes of abelian surfaces over finite fields,

in order to support the Sato-Tate assumption.

The second part of my research focuses on obtaining an upper bound for NK,A(x). Work here

begins with the observation that if Ap has real multiplication by K, then for any prime ` 6= p, the

action of Frobp on the `-torsion points of Ap must be compatible with real multiplication by K. Let

g`(T ) = fAp(T ) mod `, and define g+
` (T ) ∈ Z/` [T ] to be the real quadratic polynomial associated

to g`(T ). Then the compatibility can be phrased in this way: if Ap has real multiplication by

K, then for each ` 6= p, g+
` (T ) factors mod ` if and only if K splits at `. Now, for ` fixed,

{Frobp : p < x, p 6= `}, as matrix representations, are equidistributed in GSp4(Z/`), provided

x� `. Thus for a fixed `, one can expect that a matrix corresponding to Frobp, for some p, behaves

like a random matrix in GSp4(Z/`). I have determined that half of the matrices in GSp4(Z/`) have

real quadratic polynomials which factor mod `. It is also well known that K will split at about half

the primes `. Given this local data at `, a sieve will be used over all ` to determine an upper bound

for NK,A(x).
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4. Conclusion

The work I have done in my years as a graduate student at Colorado State University has been

both challenging and enjoyable. As I begin a career as a math professional I look forward to collab-

oration with colleagues on related research, as well as the opportunity to work with undergraduates

on research projects about elliptic curves or abelian surfaces.
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