The Question

Let \mathbb{F}_{q} be the field of size q of characteristic p. Fix a positive integer d.

How many principally polarized abelian surfaces (PPAS), A / \mathbb{F}_{q} are there such that A has real multiplication by $\mathbb{Q}(\sqrt{d})$?
Equivalently, how many abelian surfaces A / \mathbb{F}_{q}, such that $\mathbb{Q}(\sqrt{d}) \subset \operatorname{End}^{0}(A)$?

Relevant Definitions

- A a principally polarized abelian surface (PPAS)
- An endomorphism of an abelian surface A is a group homomorphism from A to itself.
- Let $\operatorname{End}^{0}(A)=\operatorname{End}(A) \otimes \mathbb{Q}$ be the algebra of endomorphisms of A with coefficients extended to \mathbb{Q}.
- An isogeny between two abelian surfaces A and B is a surjective homomorphism with finite kernel.
- An abelian surface A has real multiplication $(R M)$ by $\mathbb{Q}(\sqrt{d})$ if $\mathbb{Q}(\sqrt{d}) \subset \operatorname{End}^{0}(A)$.
- Let $\operatorname{RMI}(d, q):=\left\{(a, b) \mid T^{4}-a T^{3}+b T^{2}\right.$ $a q T+q^{2}=f_{A}(T)$ for A with RM by $\left.\mathbb{Q}(\sqrt{d})\right\}$.
- $X(d, q):=\left\{A \mid A / \mathbb{F}_{q}\right.$ with RM by $\left.\mathbb{Q}(\sqrt{d})\right\}$.
$\operatorname{RMI}(d, q)$

Introduction

Let A be an abelian variety defined over $\mathbb{F}_{q} . A$ admits an endomorphism called the Frobenius endomorphism (the q power map). Denote the Frobenius endomorphism by π_{A}. Then π_{A} has a matrix representation in $G S p_{4}$, and thus has a corresponding characteristic polynomial, we'll denote by $f_{A}(T)$. We shall use the following facts about abelian surfaces and $f_{A}(T)$ in order to count the number of A / \mathbb{F}_{q} such that A has RM by $\mathbb{Q}(\sqrt{d})$.

Facts:

1. Two abelian surfaces A and B are isogenous if and only if $f_{A}(T)=f_{B}(T)$.
2. The roots of $f_{A}(T)$ have size \sqrt{q} and come in complex conjugate pairs, $\sqrt{q} e^{ \pm i \theta_{k}}$.
3. $f_{A}(T)=T^{4}-a T^{3}+b T^{2}-a q T+q^{2}$ where $|a| \leq 4 \sqrt{q}$ and $2|a| \sqrt{q}-2 q \leq b \leq \frac{a^{2}}{4}+2 q$. (These conditions define the Weil region as shown at right.)
4. The discriminant of the real quadratic subfield inside $\operatorname{End}^{0}(A)$ is $\Delta_{A}^{+}=a^{2}-4 b+8 q$.

Summary

Counting the set RMI (d, q)
If $\Delta_{A}^{+}=a^{2}-4 b+8 q=r^{2} d$, then $\mathbb{Q}(\sqrt{d}) \subset$ $\operatorname{End}^{0}(A)$

Count coefficient pairs (a, b) which satisfy $\Delta_{A}^{+}=r^{2} d$. This effectively counts the number isogeny classes of PPAS with RM by $\mathbb{Q}(\sqrt{d})$, by Fact 1. (Equivalently \#RMI (d, q).)
Reduce this count to counting pairs (a, r) which satisfy $b \in \mathbb{Z}$. This imposes parity conditions on a and r :
$\bullet d \equiv 2,3 \bmod 4, \Rightarrow a$ and r both even.
$\cdot d \equiv 1 \bmod 4, \Rightarrow a$ and r have same parity. The Weil region imposes the bound $|r| \leq \frac{4 \sqrt{q}-a}{\sqrt{d}}$. For each a define $r_{a}=\frac{4 \sqrt{q}-a}{\sqrt{d}}$, then sum $\sum r_{a}$.

The different cases for d are treated separately, first with $a=2 m$ and $r=2 n$ then with $a=2 m+1$ and $r=2 n+1$.

The plots at left illustrate the coordinate points $(a, b) \in \operatorname{RMI}(d, q)$ for different values of d and q.

The size of an isogeny class

Weyl's formula for the Sato-Tate measure is given in terms of the angles of the roots of $f_{A}(T)$: $\mu_{S T}\left(\theta_{1}, \theta_{2}\right)=$
$2^{2^{2}}\left(\cos \left(\theta_{2}\right)-\cos \left(\theta_{1}\right)\right)^{2} \frac{1}{\pi} \sin ^{2}\left(\theta_{1}\right) d \theta_{1} \frac{1}{\pi} \sin ^{2}\left(\theta_{2}\right) d \theta_{2}$
Through a change of coordinates this can be rewritten in terms of q and the coefficients of $f_{A}(T):$
$\mu_{S T}(a, b ; q)=$

$$
\frac{\sqrt{\left(a^{2}-4 b+8 q\right)\left(b^{2}+4 b q+4 q^{2}-4 a^{2} q\right)}}{4 q^{3} \pi^{2}} d a d b
$$

Thinking of $\mu_{S T}(a, b ; q)$ as the probability that (a, b) appear as the coefficients of $f_{A}(T)$, one expects $q^{3} \mu_{S T}$ to approximate the size of the isogeny class associated to the coefficients (a, b).

The plots at right illustrate the surface $q^{3} \mu_{S T}$ for $q=5$.

Results

The size of an isogeny class is bound above by:

$$
q^{3} \mu_{S T}(a, b ; q) \leq \frac{8}{\pi^{2} 3 \sqrt{3}} q^{3 / 2}
$$

Together these give an upper bound on $\# X(d, q)$:
$\# X(d, q) \leq \begin{cases}\frac{32}{3 \sqrt{3} \pi^{2} \sqrt{d}} q^{5 / 2} & \text { if } d \equiv 2,3 \quad \bmod 4 \\ \frac{64(1+\alpha)}{3 \sqrt{3} \pi^{2} \sqrt{d}} q^{5 / 2} & \text { if } d \equiv 1 \quad \bmod 4 \\ & \text { and } \alpha>0, q \geq \frac{1}{16 \alpha^{2}}\end{cases}$

Lower Bounds

For given a and r the size of an isogeny class is bound below by $\frac{1}{4 \pi^{2}} \sqrt{S_{(a, r ; q)}}$.
To get a lower bound on $\# X(d, q)$, sum

$$
\sum_{a} \sum_{r} \frac{1}{4 \pi^{2}} \sqrt{S_{(a, r ; q)}}
$$

For $0<\gamma<1$ there exists $q_{(d, \gamma)}$ such that for $q>$ $q_{(d, \gamma)}$,
$\# X(d, q)> \begin{cases}\frac{(1-\gamma) 8}{5 \pi^{2} \sqrt{d}} q^{5 / 2} & \text { if } d \equiv 2,3 \quad \bmod 4 \\ \frac{(1-\gamma) 16}{5 \pi^{2} \sqrt{d}} q^{5 / 2} & \text { if } d \equiv 1 \quad \bmod 4\end{cases}$ $\mu_{S T}(a, b ; q)$

