Counting Abelian Surfaces with Real Multiplication by $\mathbb{Q}(\sqrt{d})$

The Question

Let \mathbb{F}_q be the field of size q of characteristic p. Fix a positive integer d.

How many principally polarized abelian surfaces (PPAS), A/\mathbb{F}_q are there such that A has real multiplication by $\mathbb{Q}(\sqrt{d})$?

Equivalently, how many abelian surfaces A/\mathbb{F}_q , such that $\mathbb{Q}(\sqrt{d}) \subset \operatorname{End}^0(A)$?

Relevant Definitions

- \bullet A a principally polarized abelian surface (PPAS)
- An *endomorphism* of an abelian surface A is a group homomorphism from A to itself.
- Let $\operatorname{End}^{0}(A) = \operatorname{End}(A) \otimes \mathbb{Q}$ be the algebra of endomorphisms of A with coefficients extended to \mathbb{Q} .
- An *isogeny* between two abelian surfaces Aand B is a surjective homomorphism with finite kernel.
- An abelian surface A has real multiplication (RM) by $\mathbb{Q}(\sqrt{d})$ if $\mathbb{Q}(\sqrt{d}) \subset \operatorname{End}^0(A)$.
- Let $\operatorname{RMI}(d,q) := \{(a,b) | T^4 aT^3 + bT^2 dt \}$ $aqT+q^2 = f_A(T)$ for A with RM by $\mathbb{Q}(\sqrt{d})$.
- $X(d,q) := \{A \mid A / \mathbb{F}_q \text{ with RM by } \mathbb{Q}(\sqrt{d})\}.$

Hilary Smallwood (smallwoo@math.colostate.edu), Jeff Achter

Introduction

Let A be an abelian variety defined over \mathbb{F}_q . A admits an endomorphism called the Frobenius endomorphism (the q power map). Denote the Frobenius endomorphism by π_A . Then π_A has a matrix representation in GSp_4 , and thus has a corresponding characteristic polynomial, we'll denote by $f_A(T)$. We shall use the following facts about abelian surfaces and $f_A(T)$ in order to count the number of A/\mathbb{F}_q such that A has RM by $\mathbb{Q}(\sqrt{d})$.

Facts:

- 1. Two abelian surfaces A and B are isogenous if and only if $f_A(T) = f_B(T)$.
- 2. The roots of $f_A(T)$ have size \sqrt{q} and come in complex conjugate pairs, $\sqrt{q}e^{\pm i\theta_k}$.
- 3. $f_A(T) = T^4 aT^3 + bT^2 aqT + q^2$ where $|a| \le 4\sqrt{q} \text{ and } 2|a|\sqrt{q} - 2q \le b \le \frac{a^2}{4} + 2q.$ (These conditions define the Weil region as shown at right.)
- 4. The discriminant of the real quadratic subfield inside $\operatorname{End}^{0}(A)$ is $\Delta_{A}^{+} = a^{2} - 4b + 8q$.

Counting the set RMI(d, q)

If $\Delta_A^+ = a^2 - 4b + 8q = r^2 d$, then $\mathbb{Q}(\sqrt{d}) \subset$ $\operatorname{End}^0(A)$

Count coefficient pairs (a, b) which satisfy $\Delta_A^+ = r^2 d$. This effectively counts the number isogeny classes of PPAS with RM by $\mathbb{Q}(\sqrt{d})$, by Fact 1. (Equivalently #RMI(d,q).)

Reduce this count to counting pairs (a, r)which satisfy $b \in \mathbb{Z}$. This imposes parity conditions on a and r:

• $d \equiv 2, 3 \mod 4$, $\Rightarrow a$ and r both even.

• $d \equiv 1 \mod 4$, $\Rightarrow a$ and r have same parity. The Weil region imposes the bound $|r| \leq \frac{4\sqrt{q}-a}{\sqrt{2}}$. For each *a* define $r_a = \frac{4\sqrt{q}-a}{\sqrt{2}}$, then sum $\sum r_a$.

The different cases for d are treated separately, first with a = 2m and r = 2n then with a = 2m + 1 and r = 2n + 1.

The plots at left illustrate the coordinate points $(a, b) \in \text{RMI}(d, q)$ for different values of d and q.

Summary

 2^{2^2} (co

 $f_A(T)$: $\mu_{ST}(a,b;q) =$

 $\sqrt{a^2}$

for q = 5.

The size of an isogeny class

Weyl's formula for the Sato-Tate measure is given in terms of the angles of the roots of $f_A(T)$: $\mu_{ST}(\theta_1, \theta_2) =$

$$\operatorname{os}(\theta_2) - \operatorname{cos}(\theta_1) \Big)^2 \frac{1}{\pi} \sin^2(\theta_1) d\theta_1 \frac{1}{\pi} \sin^2(\theta_2) d\theta_2$$

Through a change of coordinates this can be rewritten in terms of q and the coefficients of

$$\frac{a^2 - 4b + 8q)(b^2 + 4bq + 4q^2 - 4a^2q)}{4q^3\pi^2}dadb$$

Thinking of $\mu_{ST}(a,b;q)$ as the probability that (a, b) appear as the coefficients of $f_A(T)$, one expects $q^3 \mu_{ST}$ to approximate the size of the isogeny class associated to the coefficients (a, b). The plots at right illustrate the surface $q^3 \mu_{ST}$ # RMI(d, q)

The size of an isogeny class is bound above by:

Together these give an upper bound on #X(d,q):

#X(d,q)

 $q_{(d,\gamma)},$

 $\#X(d,q) > \langle$

Results

Upper Bounds

$$q) \leq \begin{cases} \frac{4q}{\sqrt{d}} & \text{if } d \equiv 2,3 \mod 4\\ \frac{(1+\alpha)8q}{\sqrt{d}} & \text{if } d \equiv 1 \mod 4,\\ & \text{and } \alpha > 0, q \geq \frac{1}{16\alpha^2} \end{cases}$$

$$q^{3}\mu_{ST}(a,b;q) \le \frac{8}{\pi^{2}3\sqrt{3}}q^{3/2}.$$

$$\leq \begin{cases} \frac{32}{3\sqrt{3}\pi^2\sqrt{d}}q^{5/2} & \text{if } d \equiv 2,3 \mod 4\\ \frac{64(1+\alpha)}{3\sqrt{3}\pi^2\sqrt{d}}q^{5/2} & \text{if } d \equiv 1 \mod 4\\ & \text{and } \alpha > 0, q \ge \frac{1}{16\alpha^2} \end{cases}$$

Lower Bounds

For given a and r the size of an isogeny class is bound below by $\frac{1}{4\pi^2}\sqrt{S_{(a,r;q)}}$. To get a lower bound on #X(d,q), sum

$$\sum_{a} \sum_{r} \frac{1}{4\pi^2} \sqrt{S_{(a,r;q)}}.$$

For $0 < \gamma < 1$ there exists $q_{(d,\gamma)}$ such that for q > 1

 $\frac{(1-\gamma)8}{5\pi^2\sqrt{d}}q^{5/2} \quad \text{if } d \equiv 2,3 \mod 4$ $\frac{(1-\gamma)16}{1-\gamma}q^{5/2} \quad \text{if } d \equiv 1 \mod 4$ if $d \equiv 2, 3 \mod 4$